Eye-tracking in language research

Judith Degen

CSLI Eye-tracking Workshop

June 20-21, 2013
Eye movements as a window onto language comprehension

- speech perception
- word recognition
- syntactic ambiguity resolution
- pronoun resolution
- prosody
- pragmatics (scalar implicature processing, use of common/privileged ground, contrastive inferences)
Eye movements as a window onto language comprehension

- speech perception
- word recognition
- syntactic ambiguity resolution
- pronoun resolution
- prosody
- pragmatics (scalar implicature processing, use of common/privileged ground, contrastive inferences)
Why eye movements?

- ballistic, i.e. not subject to control
- implicit measure of comprehension, i.e. participants are not aware of their eye movements
- closely time-locked to speech events, i.e. can be used with continuous speech
- reflect both shifts in attention and expectations about upcoming input
Linking hypothesis

- link between **eye movement patterns** and **comprehension process**

 generally: as linguistic input unfolds, listener’s attention will shift to objects in the display as they become relevant
 → shift in attention is typically followed by saccadic eye movement (with a 200ms delay for programming and executing the saccade)

- formulating an explicit linking hypothesis is **hard**
 - typically, predictions are qualitative (a target region is expected to be fixated **earlier** or **more** in one condition than another)
 - sometimes, predictions are quantitative
Problems in generating linking hypothesis

- What is being predicted?
 - probability of saccade
 - probability of saccade at particular point in time
 - time spent fixating a region
 - ...

- Eye movement patterns are a function of many factors
 - location of fixation at time \(t - 1 \) (\(t - 2? t - 3? \))
 - time from onset of last fixation
 - listener’s task-dependent goal
 - relative salience of objects in display
 - (hopefully) variables of interest
 - ...

Put the apple

1-referent context
Put the apple on the napkin

1-referent context
Put the apple on the napkin

1-referent context

2-referent context
Put the apple on the napkin in the box

1-referent context

2-referent context
Put the apple *on the napkin in the box*

*Put the apple that’s *on the napkin* in the box*

1-referent context

2-referent context
Spoken language comprehension is both *interactive* and *incremental*; non-linguistic visual information can influence expectations about syntactic parses as early as this information is contextually available.
Spoken word recognition

Allopenna, Magnuson, and Tanenhaus (1998)

Target = beaker
Cohort = beetle
Unrelated = carriage

Look at the cross. Click on the beaker.
Anticipatory eye movements Altmann and Kamide (1999)

The boy will move/eat the cake

Listeners make anticipatory saccades based on expectations about likely continuations.
Rapid *pragmatic* inference? Sedivy et al. (1999)

- reference resolution via contrastive inference (Quantity-2 maxim)
- size contrast between only one pair of objects makes pre-nominal modification felicitous for that pair (over-informative otherwise)

Pick up the big duck.
Rapid pragmatic inference.

“Pick up the big duck.”

increased looks to target object before POD (noun) suggests comprehenders rapidly draw contrastive inferences based on informativeness considerations
Pick up the *big* duck.

late POD
Two contrasts: late POD

“Pick up the big duck.”
“Put the big duck on the bottom.”

- same as just discussed
“Put the big duck on the bottom.”

- same as just discussed
- egocentric and non-egocentric view make same predictions
- egocentric view predicts late POD
- non-egocentric view predicts early POD
Rapid use of ground information

Fixations to Target

Early contrast POD effect for privileged condition

- big
- duck

Fixations over time in milliseconds (ms):

- Proportion of fixations
- Time (ms): 0 to 1200

Graph showing the proportion of fixations for different conditions.
Scalar implicatures

(1) Mary: Who did John date?
Sarah: He dated some of the girls on his swim team.
\[\leadsto\] He dated some, but not all of the girls on his swim team.

- generalization: use of a statement with a weak element (on a scale of a strong and a weak element) implicates the negation of the stronger statement
Why experiments on scalar implicature?

- Traditionally: a) are scalar implicatures defaults or b) does pragmatics follow semantics?
 - a) Default model (Levinson, 2000)
 - b) Literal-First hypothesis (Huang & Snedeker, 2009)
- More recently, in light of conflicting evidence: what are the contextual factors that affect scalar implicature processing?
(2) Mary: Who did John date?
Sarah: He dated some of the girls on his swim team.
 a. *Upper-bound interpretation:* He dated *some, but not all,* of the girls on his swim team.
 b. *Lower-bound interpretation:* He dated *some, and possibly all,* of the girls on his swim team.

- cancelability of scalar implicatures exploited in experimental studies
- display: different regions correspond to different interpretations
“Point to the girl that has some/all/two/three of the socks/soccer balls”
“Point to the girl that has some/all/two/three of the socks/CCER balls”
“Point to the girl that has some/all/two/three of the socks/CCer balls”
“Point to the girl that has some/all/two/three of the socks/soccer balls”

- measure: eye movements
- predictions:
 - default: same pattern in all conditions (fast convergence on target after quantifier)
 - 2-stage: delayed looks to target only for “some”
“Point to the girl that has some/all/two/three of the so...”
“Click on the girl who has some of the balls/all of the balloons.”
- Semantic interpretation of *some* (some and possibly all) does not disambiguate
- Pragmatic interpretation of *some* (some but not all) does
- *all* disambiguates (literal control)
looks to target increase 200-300ms after quantifier onset (both for *some* and *all*)
→ rapid computation of the implicature
Scalar implicature & number terms
Degen and Tanenhaus (under review)

- view of scalar inference (and quantifier process more generally) as a matter of probabilistic constraint-based interpretation
- with increasing support for the implicated content, the upper-bound interpretation is computed more quickly (and vice versa)

Hypotheses

1. Non-scalar alternatives like number terms can interfere with speed of implicature processing.

2. When number terms are available as alternatives, processing of *some* is delayed, especially for very small (subitizable) sets where naming of set size is almost automatic.
Gumball paradigm
Gumball paradigm
You got some of the blue/orange gumballs

Conditions:
- number alternatives present or absent
- quantifier some, all, (two, three, four, five)
- target set size big (4/5) or small (2/3)
- POD early or late
Results I - early vs. late POD, numbers absent

- in quantifier window, looks to target increase in early, but not late condition
- big sets receive more looks than small sets
- no effect of quantifier (no delay for some)
- note: baseline differences; rate effects
Results II - number presence effect

Overall delays (for both *all* and *some*) when number terms are available alternatives, but larger delays for *some* than for *all*.
Visual world eye-tracking is a powerful tool for studying incremental language processing embedded in rich visual contexts. Beware the linking hypothesis.

