The Rational Speech Act framework: an integrative theory of the interaction between literal meaning, world knowledge, and context

Judith Degen
June 21, 2019
XPrag 2019, Edinburgh
Early modern XPrag

focus on implicature cost question
Bott & Noveck 2004; Breheny et al 2006

Default theory
Levinson 2000

Relevance theory
Sperber & Wilson 1995; Carston 1998
Early modern XPrag

focus on implicature cost question
Bott & Noveck 2004; Breheny et al 2006

Default theory
Levinson 2000

Relevance theory
Sperber & Wilson 1995;
Carston 1998

Literal-first hypothesis
Huang & Snedeker 2009
Early modern XPrag

focus on implicature cost question
Bott & Noveck 2004; Breheny et al 2006

Default theory
Levinson 2000

Relevance theory
Sperber & Wilson 1995;
Carston 1998

Literal-first hypothesis
Huang & Snedeker 2009

Constraint-based account
Degen & Tanenhaus 2015
Informational privilege

Default theory
Levinson 2000

Relevance theory
Sperber & Wilson 1995; Carston 1998

Literal-first hypothesis
Huang & Snedeker 2009

Constraint-based account
Degen & Tanenhaus 2015

certain information
- processed earlier
- weighted more heavily in resulting interpretation

all information
- processed in parallel
- weighted equally in resulting interpretation

Degen & Tanenhaus 2019
linguistic signal
world knowledge

linguistic signal
world
knowledge
reasoning
context

linguistic
signal
linguistic

world
knowledge

reasoning

context

PRAGMATICS
The Rational Speech Act Framework
RSA
Probabilistic pragmatics
Franke & Jäger, 2016; Goodman & Frank, 2016; Scontras, Tessler, & Franke 2018

Reference
Frank & Goodman, 2012; Qing & Franke, 2015; Degen & Franke, 2012; Stiller et al., 2015; Franke & Degen, 2015; Degen et al, under review

Cost-based Quantity implicatures
Degen et al., 2013; Rohde et al., 2012

Scalar implicatures
Goodman & Stuhlmüller, 2013; Degen et al., 2015

Embedded implicatures
Potts et al., 2016; Bergen et al., 2016

M-implicatures
Bergen et al., 2012

Figurative meaning
Kao et al., 2013; 2014; 2015; Cohn-Gordon & Bergen, under review

Gradable adjectives
Lassiter & Goodman, 2013; 2015; Qing & Franke, 2014

Adjective ordering
Hahn et al 2018; Scontras et al 2019

Other
plural predication Scontras & Goodman 2017
I-implicatures Poppels & Levy, 2016
generics Tessler & Goodman, 2019
modals Herbstritt & Franke, 2017
vague quantifiers Schöller & Franke, 2017
convention formation Hawkins et al 2018; 2019
questions Hawkins et al 2015
pragmatic adaptation Schuster & Degen, in prep
exhaustivity inferences Javangula & Degen in prep
atypicality inferences Kratvchenko & Demberg
social meaning Burnett 2017; 2019
Bayesian models in other areas
Bayesian models in other areas

language processing:
- speech perception
- syntactic adaptation
- reading (surprisal theory)
Bayesian models in other areas

higher-level cognition:
- reasoning
- categorization
- social reasoning
- intuitive physics

language processing:
- speech perception
- syntactic adaptation
- reading (surprisal theory)
Bayesian models in other areas

<table>
<thead>
<tr>
<th>Cognitive Science More Broadly:</th>
<th>Cognitive Science More Broadly:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- visual perception</td>
<td>- reasoning</td>
</tr>
<tr>
<td>- auditory perception</td>
<td>- categorization</td>
</tr>
<tr>
<td>- multi-modal integration</td>
<td>- social reasoning</td>
</tr>
<tr>
<td></td>
<td>- intuitive physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language Processing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- speech perception</td>
</tr>
<tr>
<td>- syntactic adaptation</td>
</tr>
<tr>
<td>- reading (surprisal theory)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher-Level Cognition:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- reasoning</td>
</tr>
<tr>
<td>- categorization</td>
</tr>
<tr>
<td>- social reasoning</td>
</tr>
<tr>
<td>- intuitive physics</td>
</tr>
</tbody>
</table>
Outline

I. “Overinformativeness” in production — why do we do it?

II. “Underinformativeness” in production — how do we deal with it in comprehension?
Outline

I. “Overinformativeness” in production — why do we do it?

II. “Underinformativeness” in production — how do we deal with it in comprehension?

models corpora experiments
Part I

Production of referring expressions

Degen, Graf, Hawkins, & Goodman, under review
CONTENT SELECTION

Which features of an object should/do speakers mention?

Degen et al under review
Overinformative referring expressions — color/size asymmetry

color sufficient

the green lightbulb

Deutsch 1976; Pechmann 1989; Sedivy 2003; Gatt et al. 2011; many others
Overinformative referring expressions — color/size asymmetry

- color sufficient

- the green lightbulb

- the big green lightbulb 8-10%

Deutsch 1976; Pechmann 1989; Sedivy 2003; Gatt et al. 2011; many others
Deutsch 1976; Pechmann 1989; Sedivy 2003; Gatt et al. 2011; many others

Overinformative referring expressions — color/size asymmetry

- **size sufficient**
 - the big lightbulb
 - 75-80%

- **color sufficient**
 - the green lightbulb
 - 8-10%

Deutsch 1976; Pechmann 1989; Sedivy 2003; Gatt et al. 2011; many others
Overinformative referring expressions — color/size asymmetry

1. speakers produce overinformative referring expressions
2. more overinformative color than size mentions

Deutsch 1976; Pechmann 1989; Sedivy 2003; Gatt et al. 2011; many others
Overinformative referring expressions — color/size asymmetry

1. speakers produce overinformative referring expressions
2. more overinformative color than size mentions

“OVERINFORMATIVENESS”

Deutsch 1976; Pechmann 1989; Sedivy 2003; Gatt et al. 2011; many others
Computational models of REs

- **Greedy Algorithm**
 Dale 1989

- **Incremental Algorithm**
 Dale & Reiter 1995

- **PRO**
 Gatt et al 2013; van Gompel et al 2019
Computational models of REs

- Greedy Algorithm
 Dale 1989

- Incremental Algorithm
 Dale & Reiter 1995

- PRO
 Gatt et al 2013; van Gompel et al 2019

Informativeness
Computational models of REs

- **Greedy Algorithm**
 - Dale 1989

- **Incremental Algorithm**
 - Dale & Reiter 1995

- **PRO**
 - Gatt et al 2013; van Gompel et al 2019

Informativeness

Preferences
Computational models of REs

- **Greedy Algorithm**
 - Dale 1989

- **Incremental Algorithm**
 - Dale & Reiter 1995

- **PRO**
 - Gatt et al 2013; van Gompel et al 2019
Computational models of REs

- **Greedy Algorithm**
 - Dale 1989

- **Incremental Algorithm**
 - Dale & Reiter 1995

- **PRO**
 - Gatt et al. 2013; van Gompel et al. 2019

- **Rational Speech Act (RSA)**
 - Frank & Goodman 2012

Informativeness
Preferences
Probabilities
Computational models of REs

- **Greedy Algorithm**
 - Dale 1989
- **Incremental Algorithm**
 - Dale & Reiter 1995
- **PRO**
 - Gatt et al 2013; van Gompel et al 2019
- **Rational Speech Act (RSA)**
 - Frank & Goodman 2012

Informativeness

Preferences

Probabilities
The RSA framework
Frank & Goodman 2012

\[O = \{ \text{small, big, green, black} \} \]
\[U = \{ \text{big, small, green, black} \} \]
The RSA framework
Frank & Goodman 2012

\[O = \{ \text{small, green, black} \} \]
\[U = \{\text{big, small, green, black} \} \]

Literal listener

\[P_{L_0}(o|u) = U(o|\{u \text{ is true of } o\}) \]
\[[[u]] : O \rightarrow \{\text{true, false}\} \]
The RSA framework
Frank & Goodman 2012

\[O = \{ \text{light}, \text{green light}, \text{black light} \} \]
\[U = \{ \text{big, small, green, black} \} \]

Literal listener

\[P_{L_0}(o|u) = U(o|\{u \text{ is true of } o\}) \]
\[[[u]] : O \rightarrow \{ \text{true, false} \} \]
The RSA framework
Frank & Goodman 2012

\[O = \{ \text{light}, \text{green}, \text{black} \} \]

\[U = \{ \text{big, small, green, black} \} \]

Literal listener

\[P_{L_0}(o|u) = \mathcal{U}(o|\{u \text{ is true of } o\}) \]

\[[[u]] : O \rightarrow \{ \text{true, false} \} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]
The RSA framework
Frank & Goodman 2012

\[O = \{ \text{\textbullet}, \text{\textcircle}, \text{\textcircled{\textbullet}} \} \]
\[U = \{ \text{big, small, green, black} \} \]

Literal listener

\[P_{L_0}(o|u) = \mathcal{U}(o|\{u \text{ is true of } o\}) \]
\[[[u]] : O \rightarrow \{ \text{true, false} \} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]
The RSA framework
Frank & Goodman 2012

\[O = \{\text{on}, \text{off}, \text{on} \} \]
\[U = \{\text{big, small, green, black} \} \]

Literal listener

\[P_{L_0}(o|u) = U(o|\{u \text{ is true of } o\}) \]
\[[[u]] : O \rightarrow \{\text{true, false} \} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]
The RSA framework
Frank & Goodman 2012

\[O = \{ \text{true}, \text{false} \} \]
\[U = \{ \text{big, small, green, black} \} \]

Literal listener

\[P_{L_0}(o|u) = \mathcal{U}(o|\{u \text{ is true of } o\}) \]
\[[[u]] : O \rightarrow \{ \text{true, false} \} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot \left(\ln P_{L_0}(o|u) - C(u) \right)} \]

[Diagram showing probabilities for different quantities: big (0.6), black (0.4), green (0.2), small (0.0).]
The RSA framework
Frank & Goodman 2012

\[O = \{ \text{on}, \text{off}, \text{green}, \text{black} \} \]
\[U = \{ \text{big, small, green, black} \} \]

Literal listener

\[P_{L_0}(o|u) = U(o|\{u \text{ is true of } o\}) \]
\[[[u]] : O \rightarrow \{ \text{true, false} \} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot \left(\ln P_{L_0}(o|u) - C(u) \right)} \]

\[\lambda = 1 \]

![Probability Chart]

- big
- black
- green
- small

Manner
The RSA framework

Frank & Goodman 2012

\[O = \{ \text{\textbullet}, \text{\textbullet}, \text{\textbullet} \} \]
\[U = \{ \text{big, small, green, black} \} \]

Literal listener

\[P_{L_0}(o|u) = U(o|\{u \text{ is true of } o\}) \]
\[[[u]] : O \rightarrow \{ \text{true, false} \} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]

obvious problem: no complex utterances
The RSA framework
Frank & Goodman 2012

\[O = \{ \text{big}, \text{small}, \text{green}, \text{black} \} \]
\[U = \{ \text{big green}, \text{small green}, \text{small black} \} \]

Literal listener

\[P_{L_0}(o|u) = \mathcal{U}(o|\{u \text{ is true of } o\}) \]
\[[u] : O \to \{ \text{true, false} \} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]

obvious problem:
no complex utterances

\[
\begin{array}{c|cccc}
\text{Utterance} & \text{big} & \text{black} & \text{green} & \text{small} \\
\hline
\text{Probability} & 0.6 & 0.2 & 0.4 & 0.0 \\
\end{array}
\]

\[\lambda = 1 \]
Utterance semantics & cost

Intersective semantics

$$[[u]] = [[u_1]] \land [[u_2]]$$

$$[[\text{big green}]] = [[\text{big}]] \land [[\text{green}]]$$

Cost

$$C(u) = C(u_1) + C(u_2)$$
Utterance semantics & cost

Intersective semantics

\[
[[u]] = [[u_1]] \land [[u_2]]
\]

\[
[[\text{big green}]] = [[\text{big}]] \land [[\text{green}]]
\]

Cost

\[
C(u) = C(u_1) + C(u_2)
\]
Utterance semantics & cost

Intersective semantics

\[[u]\] = \[[u_1]\] \land \[[u_2]\]

\[[\text{big green}]\] = \[[\text{big}]\] \land \[[\text{green}]\]

Cost

\[C(u) = C(u_1) + C(u_2)\]

![Diagram showing probability of big, big green, and green objects]
Utterance semantics & cost

Intersective semantics

\[[[u]] = [[u_1]] \land [[u_2]] \]
\[[[\text{big green}]] = [[\text{big}]] \land [[\text{green}]] \]

Cost

\[C(u) = C(u_1) + C(u_2) \]

RSA does not produce overinformative REs…

Gatt et al 2013; Westerbeek et al 2015
Utterance semantics & cost

Intersective semantics

\[
[[u]] = [[u_1]] \land [[u_2]]
\]

\[
[[\text{big green}]] = [[\text{big}]] \land [[\text{green}]]
\]

Cost

\[
C(u) = C(u_1) + C(u_2)
\]

RSA does not produce overinformative REs…

Gatt et al 2013; Westerbeek et al 2015

…with deterministic semantics
Motivation for non-deterministic semantics?

Modifiers differ:

- Size adjectives are vague and context-dependent in a way that color adjectives are not.
 - Kennedy & McNally 2005

- Color is intrinsically salient in a way that size is not.
 - Arts et al. 2011; Gatt et al. 2013

- Size adjectives are judged to be more subjective than color adjectives.
 - Scontras, Degen, & Goodman 2017
Non-deterministic semantics

Literal listener

\[P_{L_0}(o | u) \propto \begin{cases}
1 - \epsilon & \text{if } [[u]](o) = \text{true} \\
\epsilon & \text{otherwise}
\end{cases} \]
Non-deterministic semantics

Literal listener

\[P_{L_0}(o|u) \propto \begin{cases}
1 - \epsilon & \text{if } [[u]](o) = \text{true} \\
\epsilon & \text{otherwise}
\end{cases} \]
Non-deterministic semantics

Literal listener

\[P_{L_0}(o|u) \propto \begin{cases}
1 - \epsilon & \text{if } [[u]](o) = \text{true} \\
\epsilon & \text{otherwise}
\end{cases} \]
Non-deterministic semantics

Literal listener

\[P_{L_0}(o|u) \propto \begin{cases} 1 - \epsilon & \text{if } [[u]](o) = \text{true} \\ \epsilon & \text{otherwise} \end{cases} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]

![Bar chart](chart.png)

- **Object**
 - big: 0.8
 - black: 0.999
Non-deterministic semantics

Literal listener

\[P_{L_0}(o|u) \propto \begin{cases} 1 - \epsilon & [[u]](o) = \text{true} \\ \epsilon & \text{otherwise} \end{cases} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]

Two free fidelity parameters:
- \(\text{fid}(\text{size}) \)
- \(\text{fid}(\text{color}) \)
Non-deterministic semantics

Literal listener

\[P_{L_0}(o|u) \propto \begin{cases}
1 - \epsilon & [[u]](o) = \text{true} \\
\epsilon & \text{otherwise}
\end{cases} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]

Two free fidelity parameters:

- \(\text{fid}(\text{size}) \)
- \(\text{fid}(\text{color}) \)

Two free cost parameters:

- \(C(\text{size}) \)
- \(C(\text{color}) \)
Non-deterministic semantics

Literal listener

\[P_{L_0}(o|u) \propto \begin{cases} 1 - \epsilon & [[u]](o) = \text{true} \\ \epsilon & \text{otherwise} \end{cases} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]

Two free fidelity parameters:

\[\text{fid(size)} \quad \text{fid(color)} \]

Two free cost parameters:

\[C(\text{size}) \quad C(\text{color}) \]
Non-deterministic semantics

Literal listener

\[P_{L_0}(o|u) \propto \begin{cases} 1 - \epsilon & [u](o) = \text{true} \\ \epsilon & \text{otherwise} \end{cases} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]

Two free fidelity parameters:

\[\text{fid}(\text{size}) \quad \text{fid}(\text{color}) \]

Two free cost parameters:

\[C(\text{size}) \quad C(\text{color}) \]

color-size asymmetry!
Non-deterministic semantics

Literal listener

\[P_{L_0}(o|u) \propto \begin{cases} 1 - \epsilon & [[u]](o) = \text{true} \\ \epsilon & \text{otherwise} \end{cases} \]

Pragmatic speaker

\[P_{S_1}(u|o) \propto e^{\lambda \cdot (\ln P_{L_0}(o|u) - C(u))} \]

Two free fidelity parameters:

\[\text{fid}(\text{size}) \quad \text{fid}(\text{color}) \]

Two free cost parameters:

\[C(\text{size}) \quad C(\text{color}) \]

If modifiers don’t “work perfectly”,
adding modifiers adds information

![Graph showing color-size asymmetry](image)
Independent empirical evidence for RSA with non-deterministic semantics?
Scene variation

low variation

high variation

Koolen et al 2013, Davies & Katsos 2013
more redundant color use in high-variation scenes

Koolen et al 2013, Davies & Katsos 2013
Scene variation

more redundant color use in high-variation scenes

Koolen et al 2013, Davies & Katsos 2013

non-deterministic RSA predicts this result
Independent quantitative evidence for non-deterministic RSA?
Scene variation

scene variation increases probability of redundancy
Scene variation increases probability of redundancy.

$$\frac{n_{\text{diff}}}{n_{\text{total}}}$$ proportion of total distractors that don’t share target value on insufficient dimension.
Scene variation increases probability of redundancy.

\[\frac{n_{\text{diff}}}{n_{\text{total}}} \]

proportion of total distractors that don’t share target value on insufficient dimension.

sufficient dimension: size

insufficient dimension: color

\[\frac{n_{\text{red}}}{n_{\text{total}}} = \frac{2}{4} = .5 \]
Scene variation increases probability of redundancy

\[\frac{n_{\text{diff}}}{n_{\text{total}}} \]

proportion of total distractors that don’t share target value on insufficient dimension

Sufficient dimension: size

Insufficient dimension: color

\[\frac{n_{\text{red}}}{n_{\text{total}}} = \frac{2}{4} = .5 \]

greater proportion = more variation
Prediction: increase in redundant adjective use with increasing scene variation for color but not size
Interactive reference game experiment

- 58 pairs of participants on Mechanical Turk
- random assignment to speaker/listener role
- 72 trials (half targets, half fillers)
- 36 object types
- on all target trials, one of size or color was sufficient
- **scene variation manipulation:**
 - total number of distractors (2, 3, 4)
 - number of distractors that shared the insufficient feature value with target
Speaker’s perspective

You: the stapler
listener: which one??
You: big purple
Listener’s perspective

<table>
<thead>
<tr>
<th>speaker: the stapler</th>
</tr>
</thead>
<tbody>
<tr>
<td>You: which one??</td>
</tr>
<tr>
<td>speaker: big purple</td>
</tr>
</tbody>
</table>
Results

1. more redundant adjective use with greater scene variation
2. greater effect of scene variation for color than size
Bayesian data analysis

Prior on parameters

Observed data → Bayes’ rule → Posterior on parameters

Posterior predictive
Bayesian data analysis

Prior on parameters

Observed data → Bayes’ rule → Posterior on parameters

Posterior predictive
Results

The figure shows the results of an experiment on utterance probability across different scene variation levels for two conditions: color redundant and size redundant. Each condition has data points indicating the empirical probability of utterance with error bars. The data is color-coded according to the number of distractors: 2, 3, and 4. The graph illustrates how utterance probability changes with scene variation for each condition and number of distractors.
Results

![Graph showing utterance probability against scene variation for color and size redundant cases. The graph includes data points for different numbers of distractors: 2, 3, and 4. The data is represented as empirical and model predictions, with error bars indicating variability.]
Model fit

$R^2 = .73$
Posteriors over parameters

Fidelity:
inferred size
fidelity lower than inferred color fidelity

Cost:
inferred size and color costs similar (with tendency towards costlier size)
Interim summary

if modifiers are noisy, adding modifiers adds utility

RSA with noisy truth functions captures this:

overinformative referring expressions
Interim summary

if modifiers are noisy, adding modifiers adds utility

RSA with noisy truth functions captures this:

everinformative referring expressions
Interim summary

if modifiers are noisy, adding modifiers adds utility

RSA with noisy truth functions captures this:

- overinformative referring expressions

rationally redundant referring expressions
Interim summary

if modifiers are noisy, adding modifiers adds utility

RSA with noisy truth functions captures this:

- overinformative referring expressions
- rationally redundant referring expressions

level of reference

Graf et al 2016; Degen et al under review

typicality effects

Degen et al under review
Part II
—
Comprehension of scalar expressions
Scalar implicature

(1) John: Why is Ann happy?
Mary: She found some of her marbles.
Inference: Ann found some, but not all her marbles.

Generalization Grice 1975; Horn 1972, 2004
By uttering the weaker alternative from a scale of a weaker and a stronger alternative, the speaker implicates the negation of the stronger alternative.
Scalar implicature

(1) John: Why is Ann happy?
Mary: She found some of her marbles.
Inference: Ann found **some**, but not **all** her marbles.

Generalization Grice 1975; Horn 1972, 2004
By uttering the **weaker** alternative from a scale of a **weaker** and a **stronger** alternative, the speaker implicates the negation of the **stronger** alternative.

Pragmatic interpretation
...some, but not all...

Literal interpretation
...some, and possibly all...
Scalar implicature

(1) John: Why is Ann happy?
Mary: She found some of her marbles.
Inference: Ann found some, but not all her marbles.

Generalization Grice 1975; Horn 1972, 2004
By uttering the weaker alternative from a scale of a weaker and a stronger alternative, the speaker implicates the negation of the stronger alternative.

"UNDERINFORMATION"
RSA for scalar implicature

\[\begin{align*}
M &= \{ m_{\exists}, m_{\exists \wedge}, m_{\forall} \} \\
U &= \{ u_{\text{none}}, u_{\text{some}}, u_{\text{all}} \} \\
[[u_{\text{none}}]] &= \{ m_{\exists} \} \\
[[u_{\text{some}}]] &= \{ m_{\exists \wedge}, m_{\forall} \} \\
[[u_{\text{all}}]] &= \{ m_{\forall} \}
\end{align*}\]
RSA for scalar implicature

Literal listener

\[P_{L_0}(m|u) = \mathcal{U}(m|\{u \text{ is true of } m\}) \]

\[M = \{ m_{\neg \exists}, m_{\exists \neg \forall}, m_{\forall} \} \]

\[U = \{ u_{\text{none}}, u_{\text{some}}, u_{\text{all}} \} \]

\[[[u_{\text{none}}]] = \{ m_{\neg \exists} \} \]

\[[[u_{\text{some}}]] = \{ m_{\exists \neg \forall}, m_{\forall} \} \]

\[[[u_{\text{all}}]] = \{ m_{\forall} \} \]

"some"

Ann found some of her marbles
RSA for scalar implicature

Literal listener

\[P_{L_0}(m | u) = \mathcal{U}(m | \{ u \text{ is true of } m \}) \]

\[M = \{ m_{\exists \neg}, m_{\exists \forall}, m_{\forall} \} \]
\[U = \{ u_{\text{none}}, u_{\text{some}}, u_{\text{all}} \} \]
\[[[u_{\text{none}}]] = \{ m_{\exists \neg} \} \]
\[[[u_{\text{some}}]] = \{ m_{\exists \forall}, m_{\forall} \} \]
\[[[u_{\text{all}}]] = \{ m_{\forall} \} \]

Ann found some of her marbles
RSA for scalar implicature

Literal listener

\[P_{L_0}(m|u) = U(m|\{u \text{ is true of } m\}) \]

Pragmatic speaker

\[P_{S_1}(u|m) \propto e^{\lambda \cdot (\ln P_{L_0}(m|u))} \]

\[M = \{m_{\exists}, m_{\exists\forall}, m_{\forall}\} \]

\[U = \{u_{\text{none}}, u_{\text{some}}, u_{\text{all}}\} \]

\[[[u_{\text{none}}]] = \{m_{\exists}\} \]

\[[[u_{\text{some}}]] = \{m_{\exists\forall}, m_{\forall}\} \]

\[[[u_{\text{all}}]] = \{m_{\forall}\} \]

“all”

Ann found some of her marbles
RSA for scalar implicature

Literal listener

\[P_{L_0}(m|u) = U(m|\{u \text{ is true of } m\}) \]

Pragmatic speaker

\[P_{S_1}(u|m) \propto e^\lambda \cdot (\ln P_{L_0}(m|u)) \]

\[M = \{m_{\neg \exists}, m_{\exists \neg \forall}, m_{\forall}\} \]
\[U = \{u_{\text{none}}, u_{\text{some}}, u_{\text{all}}\} \]
\[[[u_{\text{none}}]] = \{m_{\neg \exists}\} \]
\[[[u_{\text{some}}]] = \{m_{\exists \neg \forall}, m_{\forall}\} \]
\[[[u_{\text{all}}]] = \{m_{\forall}\} \]

Utterance

Ann found some of her marbles
RSA for scalar implicature

Literal listener

\[P_{L_0}(m|u) = U(m|\{u \text{ is true of } m\}) \]

Pragmatic speaker

\[P_{S_1}(u|m) \propto e^{\lambda \cdot (\ln P_{L_0}(m|u))} \]

Pragmatic listener

\[P_{L_1}(m|u) \propto P_{S_1}(u|m) \cdot P(m) \]

\[M = \{ m_{\exists}, m_{\exists \forall}, m_{\forall} \} \]
\[U = \{ u_{\text{none}}, u_{\text{some}}, u_{\text{all}} \} \]
\[[[u_{\text{none}}]] = \{ m_{\exists} \} \]
\[[[u_{\text{some}}]] = \{ m_{\exists \forall}, m_{\forall} \} \]
\[[[u_{\text{all}}]] = \{ m_{\forall} \} \]

Meaning	Probability
"some" | 0.00, 0.25, 0.50, 0.75, 1.00
"all" | 0.00, 0.25, 0.50, 0.75, 1.00
"none" | 0.00, 0.25, 0.50, 0.75, 1.00

Ann found some of her marbles
RSA for scalar implicature

Literal listener

\[P_{L_0}(m|u) = U(m|\{u \text{ is true of } m\}) \]

Pragmatic speaker

\[P_{S_1}(u|m) \propto e^{\lambda \cdot (\ln P_{L_0}(m|u))} \]

Pragmatic listener

\[P_{L_1}(m|u) \propto P_{S_1}(u|m) \cdot P(m) \]

M = \{m_{\neg \forall}, m_{\forall \neg}, m_{\forall}\}

U = \{u_{\text{none}}, u_{\text{some}}, u_{\text{all}}\}

[[u_{\text{none}}]] = \{m_{\neg \exists}\}

[[u_{\text{some}}]] = \{m_{\exists \forall}, m_{\forall}\}

[[u_{\text{all}}]] = \{m_{\forall}\}

"some"

<table>
<thead>
<tr>
<th>Probability</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>(\neg\exists)</td>
</tr>
<tr>
<td>0.1</td>
<td>(\exists\neg)</td>
</tr>
<tr>
<td>0.2</td>
<td>(\forall\neg)</td>
</tr>
<tr>
<td>0.3</td>
<td>(\forall)</td>
</tr>
</tbody>
</table>

Ann found some of her marbles
RSA for scalar implicature

Literal listener

\[P_{L_0}(m|u) = U(m|\{u \text{ is true of } m\}) \]

Pragmatic speaker

\[P_{S_1}(u|m) \propto e^{\lambda \cdot (\ln P_{L_0}(m|u))} \]

Pragmatic listener

\[P_{L_1}(m|u) \propto P_{S_1}(u|m) \cdot P(m) \]

\[M = \{m_{-\exists}, m_{\exists-\forall}, m_{\forall}\} \]
\[U = \{u_{\text{none}}, u_{\text{some}}, u_{\text{all}}\} \]
\[[[u_{\text{none}}]] = \{m_{-\exists}\} \]
\[[[u_{\text{some}}]] = \{m_{\exists-\forall}, m_{\forall}\} \]
\[[[u_{\text{all}}]] = \{m_{\forall}\} \]

Ann found some of her marbles
Context in scalar implicature

• pragmatic factors:
 • world knowledge/prior beliefs Degen et al 2015; Javangula & Degen in prep
 • speaker knowledge Bergen & Grodner 2012; Goodman & Stuhlmüller 2013; Breheny et al 2013
 • utterance alternatives Degen & Tanenhaus 2015; 2016; Rees & Bott 2018; Bott & Chemla 2016
 • conversational goal / Question Under Discussion (QUD) Zondervan 2010; Degen 2013; Degen & Goodman 2014

• syntactic/semantic factors:
 • partitive, linguistic mention, determiner strength, subjecthood, information structure, prosody, monotonicity Degen 2015; Breheny et al 2006; Katsos et al 2005; de Marneffe & Tonhauser 2016;
Context in scalar implicature

- **pragmatic factors:**
 - world knowledge/prior beliefs [Degen et al 2015; Javangula & Degen in prep]
 - speaker knowledge [Bergen & Grodner 2012; Goodman & Stuhlmüller 2013; Breheny et al 2013]
 - **utterance alternatives** [Degen & Tanenhaus 2015; 2016; Rees & Bott 2018; Bott & Chemla 2016]
 - conversational goal / Question Under Discussion (QUD) [Zondervan 2010; Degen 2013; Degen & Goodman 2014]

- **syntactic/semantic factors:**
 - partitive, linguistic mention, determiner strength, subjecthood, information structure, prosody, monotonicity [Degen 2015; Breheny et al 2006; Katsos et al 2005; de Marneffe & Tonhauser 2016;]
Number alternatives in processing “some”
Degen & Tanenhaus 2015

Naturalness ratings
- Do listeners have expectations about use of *some*? $P(\text{some} \mid M)$
- Do expectations depend on the contextual availability of *number alternatives*? $P(\text{some} \mid M, C)$
Number alternatives in processing “some”

Naturalness ratings

• Do listeners have expectations about use of *some*? $P(\text{some} \mid M)$

• Do expectations depend on the contextual availability of **number alternatives**? $P(\text{some} \mid M, C)$
The gumball paradigm

You got some of the gumballs

360 participants on MTurk

Independent variables:

• set size in lower chamber: 0 - 13
• quantifier: some, all, none, (one, two, …)
• presence of number terms
Expectations of use for *some*

some is a dispreferred alternative for small sets (p < .0001)

(cf van Tiel 2014)
Expectations of use for *some*

\[\text{cf van Tiel 2014}\]

some is a dispreferred alternative for small sets \((p < .0001)\) especially when numbers are available alternatives \((p < .01)\)
Processing alternatives online
Degen & Tanenhaus 2016

You got some of the orange gumballs
Processing alternatives online

Degen & Tanenhaus 2016

absent: *some/all*
present: *some/all/two/three/four/five*
Processing alternatives online

Degen & Tanenhaus 2016

absent: some/all
present: some/all/two/three/four/five

You got some of the orange gumballs.
implicatures are slower to process when number alternatives are contextually available.
Context in RSA: alternatives

Absent: $U = \{\text{none, some, all}\}$
Present: $U = \{\text{none, some, all, one, two, three, four}\}$
Context in RSA: alternatives

Absent: $U = \{\text{none, some, all}\}$
Present: $U = \{\text{none, some, all, one, two, three, four}\}$

Pragmatic speaker
state = 2
Context in RSA: alternatives

Absent: $U = \{\text{none, some, all}\}$

Present: $U = \{\text{none, some, all, one, two, three, four}\}$

Pragmatic speaker

state = 4
Context in RSA: alternatives

Absent: \(U = \{\text{none, some, all}\} \)
Present: \(U = \{\text{none, some, all, one, two, three, four}\} \)

Pragmatic speaker
\[
\text{state} = 4
\]

both “some” and “all” less expected when numbers are present
QUD effects on scalar implicature

Does the QUD modulate scalar implicature strength?

Implicit QUD
QUD effects on scalar implicature
Degen & Goodman 2014

Does the QUD modulate scalar implicature strength?

Implicit QUD

all? Did the speaker find all of the marbles?
QUD effects on scalar implicature

Does the QUD modulate scalar implicature strength?

Implicit QUD

all? Did the speaker find all of the marbles?
QUD effects on scalar implicature

Does the QUD modulate scalar implicature strength?

Implicit QUD

all? Did the speaker find all of the marbles?
I found **all** / **some** of the marbles.
QUD effects on scalar implicature

Degen & Goodman 2014

Does the QUD modulate scalar implicature strength?

Implicit QUD

all? Did the speaker find all of the marbles?
I found all / some of the marbles.
QUD effects on scalar implicature

Degen & Goodman 2014

Does the QUD modulate scalar implicature strength?

Implicit QUD

all? Did the speaker find all of the marbles?
I found **all / some** of the marbles.

any? Did the speaker find any of the marbles?
QUD effects on scalar implicature

Does the QUD modulate scalar implicature strength?

Implicit QUD

all? Did the speaker find all of the marbles?
I found *all / some* of the marbles.

any? Did the speaker find any of the marbles?
QUD effects on scalar implicature
Degen & Goodman 2014

Does the QUD modulate scalar implicature strength?

Implicit QUD
all? Did the speaker find all of the marbles?
I found all / some of the marbles.

any? Did the speaker find any of the marbles?
I found all / some of the marbles.
QUD effects on scalar implicature
Degen & Goodman 2014

Does the QUD modulate scalar implicature strength?

Implicit QUD —> manipulated via cover stories

all? Did the speaker find all of the marbles?
I found all / some of the marbles.

any? Did the speaker find any of the marbles?
I found all / some of the marbles.
Task and results

48 participants on Mechanical Turk

Ann found this box:

She called out to her husband: 'I found some of the marbles!'

Is Ann's statement true?

literal pragmatic

Proportion of 'No' responses

<table>
<thead>
<tr>
<th>QUD</th>
<th>Proportion of 'No' responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>all?</td>
<td>0.75 ± 0.15</td>
</tr>
<tr>
<td>any?</td>
<td>0.50 ± 0.10</td>
</tr>
</tbody>
</table>

* indicates statistically significant difference.
Task and results

48 participants on Mechanical Turk

The QUD modulates scalar inference strength

Ann found this box:

She called out to her husband: 'I found some of the marbles!'

Is Ann's statement true?

 literal pragmatic

Yes No

Proportion of 'No' responses

<table>
<thead>
<tr>
<th>QUD</th>
<th>all?</th>
<th>any?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*
Task and results

48 participants on Mechanical Turk

The QUD modulates scalar inference strength
see also Degen 2013
Context in RSA: QUD

\(Q = \{q_{\text{all?}}, q_{\text{any?}}\} \)

\[P_{L_1}(m|u, q) \propto P_{S_1}(u|m, q) \cdot P(m) \]

(assuming uniform prior on QUDs and independence of QUD and actual state of the world)
Context in RSA: QUD

Q = \{ q_{\text{all}?}, q_{\text{any}?} \}

P_{L_1}(m|u, q) \propto P_{S_1}(u|m, q) \cdot P(m)

(assuming uniform prior on QUDs and independence of QUD and actual state of the world)

Pragmatic speaker

<table>
<thead>
<tr>
<th>Utterance</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>0.8</td>
</tr>
<tr>
<td>some</td>
<td>0.2</td>
</tr>
<tr>
<td>all</td>
<td>0.4</td>
</tr>
<tr>
<td>some</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Context in RSA: QUD

Degen & Goodman 2014

\[Q = \{ q_{\text{all}?}, q_{\text{any}?} \} \]

\[P_{L_1}(m|u, q) \propto P_{S_1}(u|m, q) \cdot P(m) \]

(assuming uniform prior on QUDs and independence of QUD and actual state of the world)

Pragmatic speaker

Pragmatic listener

\[
\begin{array}{c|c|c|c|c|c}
\text{Utterance} & m \land & \text{all?} & \text{any?} \\
\hline
\text{all} & 0.8 & 0.2 \\
\text{some} & 0.4 & 0.6 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
\text{QUD} & m \lor & \text{all?} & \text{any?} \\
\hline
\text{all?} & 0.100 & 0.025 & 0.000 \\
\text{any?} & 0.075 & 0.050 & 0.025 \\
\end{array}
\]
Context in RSA: QUD

Degen & Goodman 2014

\[Q = \{ q_{\text{all?}}, q_{\text{any?}} \} \]

\[P_{L_1}(m \mid u, q) \propto P_{S_1}(u \mid m, q) \cdot P(m) \]

(assuming uniform prior on QUDs and independence of QUD and actual state of the world)

Pragmatic speaker

Pragmatic listener

RSA captures QUD effects in scalar implicature
Summary

I. **Overinformativeness** in production
 redundant referring expressions are rational when modifiers are noisy

II. **Underinformativeness** in production
 listeners make efficient use of context in drawing scalar inferences
Summary

I. **Overinformativeness** in production
 redundant referring expressions are rational when modifiers are noisy

II. **Underinformativeness** in production
 listeners make efficient use of context in drawing scalar inferences

RSA as the most promising current framework
RSA?

Default theory
Levinson 2000
extreme informational privilege

Relevance theory
Sperber & Wilson 1995;
Carston 1998

Literal-first hypothesis
Huang & Snedeker 2009

Constraint-based account
Degen & Tanenhaus 2015

extreme parallelism
Levels of analysis

Marr 1982

RSA?

Default theory
Levinson 2000

extreme informational privilege

Literal-first hypothesis
Huang & Snedeker 2009

Relevance theory
Sperber & Wilson 1995;
Carston 1998

Constraint-based account
Degen & Tanenhaus 2015

Extreme parallelism
Levels of analysis

RSA?

Default theory
Levinson 2000

Relevance theory
Sperber & Wilson 1995;
Carston 1998

Literal-first hypothesis
Huang & Snedeker 2009

Constraint-based account
Degen & Tanenhaus 2015

mechanistic
Levels of analysis

Default theory
Levinson 2000
extreme informational privilege

Literal-first hypothesis
Huang & Snedeker 2009

Relevance theory
Sperber & Wilson 1995;
Carston 1998

Constraint-based account
Degen & Tanenhaus 2015

RSA?
computational

mechanistic

extreme parallelism
Challenges / limitations / future directions

- online processing: Tessler & Levy 2019; Cohn-Gordon et al 2019; Augurzky et al 2019
- resource limitations: Franke & Degen 2016
- beyond one-shot utterances: Hawkins et al 2015
- more interesting structure
- adaptation: Schuster & Degen 2019; in prep
- linking functions: Augurzky et al 2019; Qing et al 2018; Waldon & Degen in prep
The literal listener rule can be written as follows:

```javascript
// set of states (here: objects of reference)
// we represent objects as JavaScript objects to demarcate them from utterances
// internally we treat objects as strings nonetheless
var objects = [{color: 'blue', shape: 'square', string: 'blue square'},
               {color: 'blue', shape: 'circle', string: 'blue circle'},
               {color: 'green', shape: 'square', string: 'green square'}]

// set of utterances
var utterances = ['blue', 'green', 'square', 'circle']

// prior over world states
var objectPrior = function() {
  var obj = uniformDraw(objects)
  return obj.string
}

// meaning function to interpret the utterances
var meaning = function(utterance, obj){
  _.includes(obj, utterance)
}

// literal listener
var literalListener = function(utterance){
  Infer({model: function(){
    var obj = objectPrior();
    var uttTruthVal = meaning(utterance, obj);
    condition(uttTruthVal == true)
  }},
  return obj
})

viz.table(literalListener('blue'))
```

Exercises:

1. In the model above, `objectPrior()` returns a sample from a `uniformDraw` over the possible objects of reference. What happens when the listener’s beliefs are not uniform over the...
The present course serves as a practical introduction to the Rational Speech Act modeling framework. Little is presupposed beyond a willingness to explore recent progress in formal, implementable models of language understanding.

Main content

I. Introducing the Rational Speech Act framework
 An introduction to language understanding as Bayesian inference

II. Modeling pragmatic inference
 Enriching the literal interpretations

III. Inferring the Question-Under-Discussion
 Non-literal language

IV. Combining RSA and compositional semantics
 Jointly inferring parameters and interpretations

V. Fixing free parameters
 Vagueness

VI. Expanding our ontology
 Plural predication

VII. Extending our models of predication
 Generic language

VIII. Modeling semantic inference
 Lexical uncertainty

IX. Social reasoning about social reasoning
 Politeness

The literal listener rule can be written as follows:

```javascript
// set of states (here: objects of reference)
// we represent objects as JavaScript objects to demarcate them from utterances
// internally we treat objects as strings nonetheless
var objects = [{color: 'blue', shape: 'square', string: 'blue square'},
               {color: 'blue', shape: 'circle', string: 'blue circle'},
               {color: 'green', shape: 'square', string: 'green square'}]

// set of utterances
var utterances = ['blue', 'green', 'square', 'circle']

// prior over world states
var objectPrior = function() {
    var obj = uniformDraw(objects)
    return obj.string
}

// meaning function to interpret the utterances
var meaning = function(utterance, obj){
    _.includes(obj, utterance)
}

// literal listener
var literalListener = function(utterance){
    Infer(model, function(){
        var obj = objectPrior();
        var uttTruthVal = meaning(utterance, obj);
        condition(uttTruthVal == true)
        return obj
    })
}

viz.table(literalListener('blue'))
```

<table>
<thead>
<tr>
<th>(state)</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue circle</td>
<td>0.5</td>
</tr>
<tr>
<td>blue square</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Exercises:

1. In the model above, objectPrior() returns a sample from a uniformDraw over the possible objects of reference. What happens when the listener’s beliefs are not uniform over the
Thank you

Collaborators

<table>
<thead>
<tr>
<th>Elisa Kreiss</th>
<th>Mike Tanenhaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noah Goodman</td>
<td>Michael Franke</td>
</tr>
<tr>
<td>Caroline Graf</td>
<td>Greg Scontras</td>
</tr>
<tr>
<td>Robert Hawkins</td>
<td>Michael Henry Tessler</td>
</tr>
</tbody>
</table>

Funding

- Swiss National Science Foundation Early Postdoc.Mobility grant to JD
- XPrag.de DFG priority program grant to JD & MF
- James S. McDonnell grant to NG
- ONR grant N00014-13-1-0788 to NG
- NIH grant HD27206 to MT